Comparing Ridge and LASSO estimators for data analysis
نویسندگان
چکیده
منابع مشابه
Asymptotics for Lasso - Type Estimators
We consider the asymptotic behavior of regression estimators that minimize the residual sum of squares plus a penalty proportional to ∑ βj γ for some γ > 0. These estimators include the Lasso as a special case when γ = 1. Under appropriate conditions, we show that the limiting distributions can have positive probability mass at 0 when the true value of the parameter is 0. We also consider asymp...
متن کاملDensity Estimators for Truncated Dependent Data
In some long term studies, a series of dependent and possibly truncated lifetime data may be observed. Suppose that the lifetimes have a common continuous distribution function F. A popular stochastic measure of the distance between the density function f of the lifetimes and its kernel estimate fn is the integrated square error (ISE). In this paper, we derive a central limit theorem for t...
متن کاملSome Ridge Regression Estimators and Their Performances
The estimation of ridge parameter is an important problem in the ridge regression method, which is widely used to solve multicollinearity problem. A comprehensive study on 28 different available estimators and five proposed ridge estimators, KB1, KB2, KB3, KB4, and KB5, is provided. A simulation study was conducted and selected estimators were compared. Some of selected ridge estimators perform...
متن کاملa simulation comparison of Ridge regression estimators with Lars
This article has no abstract.
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Procedia Engineering
سال: 2017
ISSN: 1877-7058
DOI: 10.1016/j.proeng.2017.09.615